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a b s t r a c t

Ecological thresholds are abrupt changes of ecological state. While an ecological threshold is a widely
accepted concept, most empirical methods detect them in time or across geographic space. Although
useful, these approaches do not quantify the direct drivers of threshold response. Causal understanding
of thresholds detected empirically requires their investigation in a multi-factor domain containing the
direct drivers (often referred to as state space). Here, we present an approach to quantify thresholds
from response surfaces modeled empirically in state space. We present two indices of shape attributes
measured from response surfaces. The response surfaces are built using a regression method in state
space. The indices are threshold strength (T) and diagonality (D). We use 48 simulated response surfaces
of different shapes to test the efficacy of the indices in 3D. Our results show that T is sensitive to the
steepness of the transition from one state to the next, with various forms of abrupt, centralized thresholds
yielding the highest values among the simulated surfaces. D represents the orientation of the response
surface or the simultaneous influence of more than one predictor in eliciting the response gradient.
Strongly diagonal surfaces have the most diagonal surface area demonstrated by sharply undulating
diagonal surfaces. Given that the success of T and D requires a regression method to accurately capture
any shape of complex data structure, we also test the accuracy of empirical regression methods known
imodality
onotonic

hape descriptor
ipping point
iche modeling

to be tractable with complex data. We test classification and regression trees (CART), Random Forest, and
non-parametric multiplicative regression (NPMR) for binary and continuous responses. We use the 48
simulated response surfaces to test the methods, and we find that prediction accuracy depends on both
the T and D of the simulated data for each method. We choose the most accurate method among those
we test for capturing any shape of response surface from real data, NPMR. Finally, we use NPMR to build

antify
iagon
response surfaces and qu
threshold strength and d

. Introduction

Ecological thresholds are an increasing research priority among
atural, earth, and social sciences (USCCP, 2009; Andersen et al.,
009). Simply defined, ecological thresholds are a non-linear
esponse where a small change in the input produces an abrupt
hange in the output for the scale at hand (USCCP, 2009; Groffman
t al., 2006; Andersen et al., 2009). The occurrence of ecologi-
al thresholds can carry profound societal risks especially in the

ace of unprecedented environmental change (USCCP, 2009). Exam-
les of ecological thresholds include shifts in water clarity of lakes
aused from continuous nutrient loading that passes a critical point
Scheffer et al., 1993) and the conversion of arctic tundra to shrub-
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T and D from real ecological data sets. We demonstrate how measuring
ality from multi-factor response surfaces can advance ecology.

© 2010 Elsevier B.V. All rights reserved.

land triggered by a slight increase in temperature (USCCP, 2009).
Such threshold behavior is common across diverse systems and
scales and represents adaptive, complex behavior (Levin, 1999;
Holling, 1992).

Despite their importance, the mathematical characterization of
ecological thresholds is poorly developed. Current methods that
quantify thresholds focus either on threshold or change-point
detection in time (Andersen et al., 2009) or across geographic space
(Fortin, 1994; Jacquez et al., 2000). Yet, thresholds can be repre-
sented in state space, geographic space, or time. While thresholds
may be seen in time and geographic space, the direct drivers of
thresholds are found in state space (Scheffer and Carpenter, 2003).

Surprisingly, few methods exist for the quantification of eco-
logical thresholds in state space, and for those that do, most detect

the location of the threshold and apply only to a single predictor
(e.g. Baker and King, 2010; Brenden et al., 2008; Damgaard, 2006;
Toms and Lesperance, 2003; Qian et al., 2003). In fact, to our knowl-
edge, no method addresses the challenges that arise in state space
when thresholds are characterized with respect to more than one

dx.doi.org/10.1016/j.ecolmodel.2010.10.017
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:lintzh@science.oregonstate.edu
dx.doi.org/10.1016/j.ecolmodel.2010.10.017
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redictor. Given the inherent complexity of ecosystems, empirical
haracterization of thresholds with respect to more than one pre-
ictor (or driver) is clearly warranted (Limburg et al., 2002). The
ost important reason for expanding threshold analysis to multi-

actor predictor domains is simple. In higher dimensional predictor
pace, one can detect and measure thresholds that would not be
bserved by analyses limited to single predictors.

One grand challenge of measuring thresholds in higher dimen-
ional state space is that ecological thresholds can take more
han one geometric form. Ecological thresholds (along with other
hapes that emerge from complex systems) can result from com-
lex behavior including interactions, hierarchical relationships,
nd other forms of non-linearity (Goldenfield and Kadanoff, 1999;
eng et al., 1999; Limburg et al., 2002; Kinzig et al., 2006; Andersen

t al., 2009). Such complex behavior can yield many different
esponse shapes. For example, thresholds in 3D can be oriented
erpendicular or diagonal with respect to the input gradients; they
an look like Niagara falls, or they can be confined to part of a
esponse surface. Thus, the quantitative assessment of thresholds
n n-dimensional state space is not as simple as fitting parametric
quations, such as the logistic curve, to data. Parametric regres-
ion equations yield a distinct geometric shape or type of shape
e.g. planes or logistic curves depending on the class of equation).
onsequently, by its nature, parametric regression imposes specific
hapes or shape families a priori on data patterns. However, in com-
lex data analysis, prudence calls for regression methods that can
asily adapt to any response shape. The shape of a response surface
s an emergent property of the underlying system. It warrants accu-
ate capture, quantitative assessment, and interpretation. Unless a
pecific shape is expected or of interest, it should be treated as
nknown prior to exploratory analysis, and ideally, exploratory
nalysis would use a method that does not impose a specific shape
priori.

An ecological threshold can be considered a type of response
hape, and non-parametric regression may be the best option
or assessment of multi-factor shapes or thresholds in state
pace. Our use of the term ‘non-parametric regression’ follows
he definition for ‘computer-intensive’ regression established by
fron and Tibshirani (1991) with CART and kernel smoothers as
xamples. Such methods are known to be tractable with com-
lex data and rely on computationally intensive algorithms that
an involve iteration and re-sampling. Non-parametric regression
ay avoid imposing shape-related constraints on data patterns;

owever, little work tests their accuracy in recovering differ-
nt shapes of response patterns. Hence, we test the prediction
ccuracy of non-parametric methods; particularly, we test how
ell they predict the true underlying shape of the data pat-

ern. The results of this test provide us with a regression method
e can use to measure shape attributes of predicted response

urfaces.
Our over-arching goal is to measure the strength and orientation

f multi-factor thresholds in state space. In so doing, we provide a
ethod to verify claims of ecological thresholds and increase our

nderstanding of the multi-factor nature of thresholds. Our method
ollows two general steps. First, we model a data set and generate
predictive response surface. Then, we quantify shape attributes

rom that surface. We are not aware of any work that quantifies
hape attributes from multi-factor response surfaces as we define
hem.

We define threshold strength (T) as the abruptness of an eco-
ogical threshold in state space. We complement this index by
easuring the orientation of thresholds with more than one pre-
ictor, something we call diagonality (D). Diagonality occurs in 3-D
esponses including thresholds, and its mathematical basis mer-
ts attention in the study and interpretation of response surfaces
n general. Diagonality gauges the degree to which a threshold (or
lling 222 (2011) 427–436

any other response shape) is influenced by more than one predic-
tor. Diagonality can assist in identifying and describing complex
interactions.

The specific research objectives of this paper are: to design
indices of threshold strength and diagonality and validate them
using numerous simulated data sets of different shape, to test
the ability of non-parametric regression methods to recover a
wide range of shapes of response structures or surfaces (includ-
ing thresholds) from simulated data sets to optimize measurement
of thresholds, and to provide examples of how measuring threshold
strength and diagonality from real response surfaces can advance
ecology.

2. Methods

2.1. Index of threshold strength

We describe our index of threshold strength for three-
dimensional response surfaces in state space. We define a response
surface as a uniform grid of predicted values generated using a
model with continuous variables as input (Fig. 1). The response
value is named z, while the two predictors are x and y. We also
describe a two-dimensional version (see Appendix A). The premise
of the index is based on two criteria. First, the strongest thresholds
have the greatest bimodality in their frequency distribution. Sec-
ond, the strongest thresholds also have the greatest monotonicity
(or least change in the sign of slopes across the response surface).
The second criterion is designed to rule out pathological surfaces
exhibiting high bimodality but showing a spatial arrangement of
response values dissimilar to a threshold.

To implement calculation of the index, the response val-
ues are divided by their maximum range to standardize among
response surfaces with different ranges. We measure departure
from monotonicity incrementally across the surface using a mov-
ing circular window, which we refer to as a ‘spider’ (Fig. 1A). Our
definition of monotonicity comes from calculus, which specifies
one-dimensional input. We extend the concept of monotonicity
to three-dimensional response surfaces by calculating the average
departure from monotonicity among repeated sets of three points
as we further describe. Each set represents one-dimensional input.

To measure monotonicity from a surface of points, we use a
spider comprising nine adjacent points on a grid of 100 × 100 incre-
ments or 101 × 101 points. This is a fine enough grid to capture
abrupt changes in slope on a response surface. Four pairs of oppos-
ing vectors sharing a center point are defined per spider, NESW,
NWSE, NS, and EW (Fig. 1A). A case definition follows for each vec-
tor pair: if the two endpoints are either both above or both below
the center point, then departure from monotonicity occurs, if not,
then departure from monotonicity is zero. For cases expressing
departure from monotonicity, the degree of the departure follows:

NWSEi,j = min
{∣∣∣z∗

i,j+2 − zi+1,j+1

∣∣∣ ,
∣∣∣z∗

i+2,j
− zi+1,j+1

∣∣∣
}

NESWi,j = min
{∣∣∣z∗

i+2,j+2 − zi+1,j+1

∣∣∣ ,
∣∣∣z∗

i,j
− zi+1,j+1

∣∣∣
}

NSi,j = min
{∣∣zi+1,j+2 − zi+1,j+1

∣∣ ,
∣∣zi+1,j − zi+1,j+1

∣∣}

EWi,j = min
{∣∣zi,j+1 − zi+1,j+1

∣∣ ,
∣∣zi+2,j+1

∣∣}

(1–4)

where z denotes a response point within a spider, and i and j index
the point on a uniform grid. To give the spider a circular footprint

and approximate invariance to rotation, diagonally oriented vec-
tors are shortened through interpolation and interpolated points
are denoted as z* (Fig. 1A). See Appendix A for a description of the
interpolation method. Departure from monotonicity for a spider is
the sum of the departures, Si,j = NWSEi,j + NESWi,j + NSi,j + EWi,j. The
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Fig. 1. (A) We calculate three-dimensional threshold strength from a modeled surface formed collectively by a grid of points. A ‘spider’ is established for each unique set
o om in
a irs of
d rmed
t s for c
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f
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f nine adjacent points indexed as shown. The circular spider on the right results fr
response point, and each z* represents an interpolated response point. Four pa

emonstrate calculation of diagonality from a modeled three-dimensional surface fo
o the upper right represents one polygon and illustrates indexing of the four point

um of Si,j across all spiders yields overall departure from mono-
onicity for a response surface:

n−2

i=1

n−2∑
j=1

Si, j =
n−2∑
i=1

n−2∑
j=1

(NWSEi, j + NESWi, j + NSi, j + EWi, j) (5)
here n is the number of points within one predictor dimension.
n−2
i=1

∑n−2
j=1 Si,j is divided by the total number of paired, opposing

ectors for the surface (four times the total number of spiders eval-
ated or 4(n − 2)2 in three-dimensions) to yield average departure
rom monotonicity for the surface, K. We calculate monotonicity

ig. 2. Bird’s eye views of three-dimensional 48 simulated response surfaces. Each surfa
radient represents different values of for each response ranging from minimum to maxi
terpolating the diagonal vectors in the square spider on the left. Each z represents
opposing vectors are defined for each spider, NESW, NWSE, NS, and EW. (B) We
collectively by many four-sided polygons defined by points as shown; the diagram

alculating a metric, d, for each polygon to sum across the surface.

(M) using a negative exponential function of K, specifically:

M = e−950K (6)

M has a y-intercept of 1 for perfect monotonicity and an asymptote
at zero for strong departures from monotonicity. We set the expo-
nential coefficient to 950 to ensure that the low end of the range

in M across 48 test surfaces (presented in Fig. 2) approaches zero
for the two most undulating test surfaces. The rank order of mono-
tonicity of the test surfaces in Fig. 2 according to M are virtually the
same across three orders of magnitude of exponential coefficients
that adequately detect departures from montonicity. Threshold

ce is labeled to match corresponding names and index values in Table 1. The color
mum as shown.
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trength (T) is the product of monotonicity, M, and the bimodal-
ty of the response (Eq. (8)). The standard deviation (�z) measures
he bimodality of the frequency distribution of the response where

is the total number of response points. The denominator is N
nstead of N-1 as we use the standard deviation to describe shape
ather than a population sample. The standard deviation (Eq. (7)) is
oubled to range from 0 to 1 (Eq. (8)). Threshold strength is simply
function of bimodality for perfectly monotonic surfaces or when
onotonicity (M) is equal to one.

√√

z =

√√ 1
N

N∑
i=1

(zi − z̄)2 (7)

= 2�zM (8)

ig. 3. (A) Four three-dimensional planes (top row) with each generating function (tit
iagonality from left to right. Perfectly diagonal surface area (e.g. the right-most plane)
urface area varies strictly with one predictor (e.g. the left-most plane). In between the ex
ntil it reaches equivalence with the rate of change of z with respect to x for a diagonal pla
unction (titled above) and matching bird’s eye views (bottom row). Each function repres
ase, a multiplicative term comprising predictors x and y. The details of the four additiv
tructures capture the shape family of additive models with multiplicative terms, hyperbo
he equations yield similar shapes. Interactions of this sort create curvature and thus som
tatistical interactions.
lling 222 (2011) 427–436

2.2. Index of diagonality

We define diagonality as how oblique or diagonal the gradient of
a response surface is oriented relative to at least two predictor gra-
dients. Diagonality represents the simultaneous influence of more
than one predictor gradient in eliciting the response (Fig. 3A). For
example, perfectly diagonal surface area represents equivalence
among partial first derivatives for planes (e.g. the right-most plane
of Fig. 3A). In contrast, non-diagonal planes vary strictly with one
predictor (e.g. the left-most plane of Fig. 3A). Further, surfaces with

traditional, statistical interactions create curvature and thus some
diagonality (for example, regression models containing multiplica-
tive terms in an additive model) (Fig. 3B), but diagonal surfaces
need not have statistical interactions (e.g. the right-most plane of
Fig. 3A). Statistical interactions occur when the effect of one pre-

led above) and matching bird’s eye views (bottom row). The planes increase in
represents equivalence among partial first derivatives. In contrast, non-diagonal

tremes, the rate of change of z with respect to y gradually becomes more important
ne. (B) Four three-dimensional response structures (top row) with each generating
ents a different additive, statistical model containing an interaction term or, in this
e models vary; in particular, the functions are a mix of different orders. The four
lic paraboloids. Despite the details of the additive model and multiplicative terms,
e diagonality but strongly diagonal surfaces such as diagonal planes need not have
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ictor on a response depends on values of another predictor or
redictors.

Diagonality (D) is calculated for a three-dimensional response
urface formed by a grid of 101 by 101 points. The grid is comprised
f many four-sided polygons each defined by a unique set of four
djacent points (Fig. 1B). The vertical distance between diagonally
pposed points is calculated for each polygon, and the absolute
ifference between these two vertical distances is termed dg, where
indexes a single polygon.

g =
∣∣∣∣zi,j+1 − zi+1,j

∣∣ −
∣∣zi,j − zi+1,j+1

∣∣∣∣ (9)

Pure diagonality (P) is the sum of dg across the total number of
olygons (q). P is divided by the standard deviation of the response
�z from Eq. (7)) for comparison among disparate surfaces to yield

or standardized pure diagonality. H increases linearly with the
quare root of q; hence, it is divided by the square root of q to yield
iagonality, D, a variable insensitive to q:

= H√
q

(10)

.3. Simulated data

We test the indices with simulated data sets representing vary-
ng degrees of threshold strength and diagonality common to
cological data in state space (Table 1, Fig. 2). Our choice of sim-
lated data emerges from theoretical expectations of ecological
esponse surfaces (e.g. Scheffer and Carpenter, 2003; Austin, 2007),
ublished examples where shapes are unconstrained by modeling
ethods (e.g. Waring and Major, 1964; Makarewicz and Likens,

975; Bartlein et al., 1986), and author experience with hundreds
f ecological response surfaces. Also, several data sets are included
o expand the diagonality gradient (e.g. Z46, Z47, and Z48 in Fig. 2).
lthough several data sets appear quite similar (Z22, Z23, and Z24

n Fig. 2), they have subtle yet important differences in steepness
nd step height.

.4. Method comparison

We test the performance of each of three methods in mod-
ling 48 simulated data sets as continuous and binary data. We
elect different classes of non-parametric regression methods
nown to be tractable with complex data (Efron and Tibshirani,
991): classification and regression trees (CART) (Breiman et al.,
984), non-parametric multiplicative regression (NPMR) (a ker-
el smoother) (McCune, 2006), and a statistical ensemble method
sing CART as a building block, Random Forest (Breiman, 2001).
or each method we use the same settings across all test sur-
aces. We establish settings from recommendations and examples
n peer-reviewed literature (explanations of methods and settings
re described in Appendix A).

We compare the prediction accuracy (henceforth referred to as
ccuracy) of the methods by examining prediction error across all
imulated shapes for binary and continuous responses. The accu-
acy for a continuous response is assessed with R2. For accuracy in
inary classification, we use the area under the receiver operator
haracteristic curve (AUC) (see Appendix A) (Hanley and McNeil,
982). Fig. 4 depicts scatterplots of accuracy versus threshold
trength and diagonality for CART, Random Forest, and NPMR. Each
oint represents a median, externally validated accuracy of 100
odels built from random samples (N = 250), which are drawn from

simulated data set (100 increments squared or size N = 10,201) of

pecific shape; we choose N = 250 as a realistic size for an ecologi-
al data set. External validation gauges prediction error for external
ata. We rely on variable selection and overfitting controls inherent
o each method when supplied with the two predictors (x, y).
lling 222 (2011) 427–436 431

3. Results

3.1. Efficacy of the threshold strength index

The rank order of threshold strength is sensitive to steepness
or how closely the response surfaces resemble a single step with
highly undulating surfaces yielding the lowest threshold strength
(T = 0), progressing through the Gaussian hill (T = 0.36) to the Gaus-
sian ridge (T = 0.68) to end with various forms of strong, centralized
thresholds (T > 0.93) (Table 1, Fig. 2). All surfaces with morphologies
resembling single steps rank higher than the other shapes pre-
sented. The index tracks incremental changes in steepness among
similarly shaped monotonic surfaces such as single steps (e.g.
Table 1, Z1 and Z2 in Fig. 2; see Appendix A); however, increased
departure from monotonicity can slightly increase with increased
steepness in ‘staircases’ (Z24 > Z23 in Fig. 2); yet, the effect of this
is not detectable at two decimal places. The index ranks surfaces
resembling centralized steps similarly regardless of exact form.
Thus, a central threshold showing a steep transition albeit with
more curvature (from a bird’s eye view) (e.g. Z3) ranks closely with
a central step showing a steep transition but no curvature (e.g. Z34)
(Table 1, Fig. 2). The general shape of a threshold (albeit with vari-
able steepness) is lost below T = 0.72 for the sample of 48 shapes
we provide (Table 1, Fig. 2). Additionally, surfaces in two and three
dimensions generated from the same function yield equivalence
in threshold strength (see Appendix A). Finally, the index detects
abrupt changes between planar features that are parallel to the
x–y plane. For example, the surface Z35 contains an abrupt change
between different regions of the response surface where one side
of the transition is z = 0 (or a static value for the response variable
shown as a single color, black) but the other side of the transition
resembles a skate ramp (shown with the color gradient; Fig. 2). Con-
sequently, Z35 yields a relatively low value of threshold strength
(T = 0.53). Although an abrupt transition exists in this surface, the
transition does not contribute to a step-like form where each state is
flat and parallel to the x–y plane, which is the operational definition
of a threshold we present here.

3.2. Efficacy of the diagonality index

The simulated 3D surfaces varying with only one predictor have
diagonality of zero as expected (Table 1). Strongly diagonal sur-
faces have the most diagonal surface area demonstrated by sharply
undulating diagonal surfaces such as ‘weaving’ (D = 20.31) (Z48 in
Fig. 2). The index is insensitive to scale for scales small enough
to capture global shape starting with 100 increments or 101 by
101 points for a square grid. Also, diagonality varies linearly with
angle of rotation for a surface as expected (see Appendix A). How-
ever, the index does not explicitly discern the spatial location and
configuration of diagonality present within a surface. For exam-
ple, two different shapes of surfaces, one planar (Z17, Fig. 2) and
another kite-like (Z27, Fig. 2) have very similar values of diagonality
(D = 2.55, and D = 2.52 respectively).

3.3. Accuracy of modeling methods with simulated data

The accuracy of each method depends on the threshold strength
and diagonality of the original data structure with each method
differing in degree of dependence (Fig. 4). The accuracy of most
methods decreases as diagonality increases and threshold strength
decreases with the exception of NPMR with continuous data (lower

right two axes, Fig. 4). NPMR demonstrates the least variability
(seen as quantile bars in Fig. 4) and the greatest accuracy (seen
as medians in Fig. 4) compared to the other methods for a given
response shape. The sensitivities of modeling methods to shape
attributes of data structure arises from features specific to each
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Table 1
Simulated data surfaces from Fig. 2 named and ranked in descending order by values of diagonality (D) (left panel) and threshold strength (T) (right panel).

D Label Surface name T Label Surface name

20.31 Z48 Weaving 0.980 Z14 Steep step
16.15 Z45 Diag waves 0.963 Z3 Steep Niagara step
15.29 Z44 Zig-zag slant 0.961 Z34 Steep diag step
13.36 Z38 Zig-zag diag abrupt 0.936 Z4 Niagara step
11.03 Z40 Organic peaks 0.931 Z13 Moderately steep step

9.12 Z47 Undulating sea 0.846 Z33 Steep diag step off-center
8.58 Z43 Stream valley 0.805 Z1 Steep Niagara step off-center
7.71 Z37 Diag two waves abrupt 0.801 Z12 Gentle step
7.63 Z42 Diag Gaussian ridge 0.781 Z5 Niagara edge step
6.17 Z39 Wide zig 0.772 Z8 Steep corner square step
5.96 Z30 Parachute 0.770 Z7 Corner square step
5.90 Z25 Short stream valley 0.757 Z2 Niagara step off-center
5.31 Z46 Four eggs 0.727 Z11 s-Curve
4.93 Z29 Diag Gaussian hill-ridge 0.716 Z6 Corner wave step
4.85 Z18 z = x + y 0.676 Z15 Gaussian ridge
4.85 Z19 z = 0.5x + 0.5y 0.673 Z16 Wide Gaussian ridge
4.65 Z35 Skate-ramp abrupt diag 0.623 Z41 Diag Gaussian ridge abrupt L
4.64 Z31 Gaussian wide hill 0.618 Z42 Diag Gaussian ridge
4.42 Z20 s-Curve off-center 45 0.597 Z24 Triple staircase
4.14 Z36 Gaussian skate-ramp abrupt 0.597 Z22 Triple staircase diff levels
4.05 Z34 steep diag step 0.596 Z23 Steep triple staircase
3.73 Z32 Gaussian hill 0.583 Z10 z = x
3.69 Z41 Diag Gaussian ridge abrupt L 0.576 Z21 s-Curve off-center 60
3.35 Z33 Steep diag step off-center 0.575 Z9 z = x3

3.14 Z21 s-Curve off-center 60 0.569 Z27 Niagara kite
2.99 Z26 z = xy 0.554 Z20 s-curve off-center 45
2.9 Z28 z = x − xy 0.528 Z35 Skate-ramp abrupt diag
2.55 Z17 z = x + 0.4y 0.500 Z31 Gaussian wide hill
2.52 Z27 Niagara kite 0.454 Z29 Diag Gaussian hill-ridge
2.37 Z2 Niagara step off-center 0.449 Z17 z = x + 0.4y
2.25 Z1 Steep Niagara step off-center 0.448 Z30 Parachute
1.94 Z4 Niagara step 0.445 Z26 z = xy
1.89 Z3 Steep Niagara step 0.443 Z25 Short stream valley
1.77 Z5 Niagara edge step 0.426 Z28 z = x − xy
0.37 Z6 Corner wave step 0.421 Z43 Stream valley
0.36 Z24 Triple staircase 0.412 Z18 z = x + y
0.34 Z7 Corner square step 0.412 Z19 z = 0.5x + 0.5y
0.26 Z22 Triple staircase diff levels 0.409 Z39 Wide zig
0.21 Z23 Steep triple staircase 0.365 Z32 Gaussian Hill
0.10 Z8 Steep corner square step 0.362 Z36 Gaussian skate-ramp abrupt
0.00 Z14 Steep step 0.336 Z37 Diag two waves abrupt
0.00 Z12 Gentle step 0.280 Z46 Four eggs
0.00 Z13 Moderately steep step 0.220 Z38 Zig-zag diag abrupt
0.00 Z11 s-Curve 0.215 Z44 Zig-zag slant
0.00 Z16 Gaussian ridge 0.198 Z47 Undulating sea
0.00 Z15 Wide Gaussian ridge 0.122 Z45 Diag waves
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0.00 Z10 z = x
0.00 Z9 z = x3

odeling method, which manifest in visual differences of predicted
urfaces for different shapes (Fig. 5). For our subsequent analyses
sing real ecological data, we choose the most accurate and robust
ethod we test, NPMR. Additionally, we append the simulated

ata sets underlying the surfaces shown in Fig. 2 (see Appendix D
upplements 1 through 3). We encourage testing of other methods.

.4. Application of the indices

Application of threshold strength and diagonality with real data
an test theory and answer questions about ecological thresholds.

e present examples using real data with the goal of demonstrat-
ng how the indices can be applied (Fig. 6). The results provided by
he examples are preliminary and require further investigation. Our
xamples focus on thresholds in state space. However, we recog-

ize that these tools can apply to thresholds in time and geographic
pace, and these are topics of future study.

For our first example, the indices evaluate the theory formu-
ated by Berryman (1982) and reviewed by Christiansen et al.
1987) (Fig. 6A). The theory holds tree vigor and bark beetle attack
0.000 Z40 Organic peaks
0.000 Z48 Weaving

as drivers of threshold responses in tree or stand survival across
species. Here we evaluate the question, do bark beetle densities and
tree vigor drive threshold responses in sapwood survival across tree
species? Fig. 6A demonstrates that the response surface of Picea
abies survival has a moderately strong threshold (T = 0.76), while
Pinus contorta has a weaker threshold (T = 0.61). For benchmark
comparisons, see surface Z2, Fig. 2, Table 1, also with T = 0.76, and a
diagonally tilted plane, Z19, with T = 0.41. The results suggest that
the theory does not apply equally well to both species for the vari-
ables tested. Also, responses of both species show diagonality; thus,
each surface demonstrates that both factors elicit the response gra-
dient among species. However, P. abies shows greater diagonality
compared to P. contorta (Fig. 6A). Other factors likely need to be
given account as recent works support cross-scale drivers behind
bark beetle thresholds (e.g. Raffa et al., 2005, 2008).
Fig. 6B demonstrates an application of threshold strength in
a 2D context. Since this is in 2D, only threshold strength can be
measured. For this example we ask: does greater stomatal con-
trol (termed isohydry) create stronger thresholds in percent loss
of conductivity versus water potential for woody vascular plants?
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Fig. 4. Prediction accuracy of Random Forest, Classification and Regression Trees (CART), and non-parametric multiplicative regression (NPMR) for continuous and binary
r a med
w 201).
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esponses plotted versus threshold strength (T) and diagonality (D). Each point is
here N = 250. The samples draw from a large subset of a simulated data set (N = 9
ata set (see Fig. 2 for the simulated data sets). Error bars represent 95% quantiles.
sohydric plants close their stomata (cells controlling gas exchange
rom leaves) when leaf water potentials reach a set value. Anisohy-
ric plants allow water potential to decline with water stress (Vogt,
001). Vulnerability curves measure the percent loss of hydraulic

ig. 5. A visual comparison of predicted three-dimensional response surfaces
ogether with surfaces showing the original data (bird’s eye views). Results are
hown from three modeling methods for two types of responses, continuous and
inary. In the case of the right-most three columns, the binary response surfaces
epresent the probabilities of underlying point densities. The top row depicts the
riginal response surfaces each comprising 10,201 data points or 100 by 100 incre-
ents. The lower rows show predicted values for models built from a random

ubsample (size N = 250) of each original response surface in the top row. Two repli-
ations of random samples are shown for each modeling method to provide a sense
f the variation.
ian, externally validated accuracy of 100 models built from random samples size
A separate subset of 1000 points performs external validation for each simulated

conductivity of xylem (water-conducting tissue) with declining
water potential; they also assess the function of water-transporting
conduits within the plant during drought stress (Sperry et al., 1988)
(Fig. 6B). Isohydry may create stronger thresholds in vulnerabil-
ity curves of vascular plants as the strategy precludes the need
for plants to construct conduits with differing resistances to water
stress. The measurement of threshold strength from vulnerability
curves of iso- or aniso-hydric species is necessary to evaluate the
research question. Preliminary calculations suggest that increased
stomatal control may create stronger thresholds in vulnerability
curves (T = 0.82, 0.74 for isohydric species; T = 0.62, 0.58 for aniso-
hydric species) (Fig. 6B). However, a larger sample size consisting
of more species is needed to ascertain this.

Last, threshold strength and diagonality can be applied to
selected domains within a complex response surface. For exam-
ple, Fig. 6C shows a cropped portion of a response surface for
a model of the probability of tree species’ occurrence relative to
climate for Pinus ponderosa in Oregon. The model is based on pres-
ence/absence data (Azuma et al., 2002, 2004). We select and crop
the response within a specific climate domain. At first glance, one
might assume that the selected portion of the response surface
resembles a threshold; however, when compared to simulated
data, the threshold strength is weak (T = 0.68). Further, the low
diagonality shows that the response within this domain is mainly
driven by a single variable (D = 0.76). However, the diagonality of
the surface as a whole demonstrates that both drivers are respon-
sible for eliciting the response gradient (mostly in regions outside
the selected domain) (D = 5.41). The lack of diagonality within the
cropped domain in Fig. 6C elicits the following question: why is

the probability of tree species occurrence only attributable to PCA1
within the selected domain? Response surfaces are snapshots of
complex system behavior, and quantifying the diagonality (and
threshold strength) of selected regions of response surfaces can
identify interactions within the surfaces.



434 H.E. Lintz et al. / Ecological Modelling 222 (2011) 427–436

Fig. 6. The application of threshold strength (T) and diagonality (D) to ecological data using prediction surfaces (right) generated by NPMR for different data sets (see Appendix
B: Table B1 for specifications). Threshold strength (T) and diagonality (D) values (left) are measured from modeled surfaces (right) test different questions (left). (A) Proportion
of sapwood survival versus separate measures of tree vigor and severity of bark beetle attack for two tree species. Left: Picea abies attacked by Ips typographus. Right: Pinus
contorta attacked by Dendroctonus ponderosae; data and theory from (Christiansen et al., 1987). (B) Mean percent loss in hydraulic conductivity versus shoot water potential
(−MPa) of branches of two isohydric (red lines) and two anisohydric (black lines) species. Lines show predicted curves from data of stems of two shrub species, Grayia spinosa
and Chrysothamnus nauseosus (Hacke et al., 2000), and branches of two tree species Juniperus osteosperma and Pinus edulis (Linton et al., 1998) (see Appendix C: Fig. C1).
(C) Probability of occurrence for a dominant tree species in Oregon, Pinus ponderosa, modeled relative to two axes derived using Principal Components Analysis. A summer
a increa
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ridity gradient (axis 2) increases vertically and a continentality gradient (axis 1)
ariability in the source data (see Appendix B: Table B2). Threshold strength and di
724 plots of the Forest Inventory Analysis program in Oregon (Azuma et al., 2002
eferred to the web version of the article.)

. Discussion

.1. Ecological relevance

Threshold strength and diagonality represent the first tools
o quantify multi-factor ecological thresholds in state space. The
xamples with real data demonstrate utility of the indices in state
pace. For example, we measure threshold strength for a diagonal
esponse in multi-factor state space (e.g. Fig. 6A, left panel). We
etected a relatively strong threshold. If this response data were to

e analyzed with respect to either one of those predictors alone,
he threshold strength would be much lower.

The indices can be measured from a cropped portion of a
esponse surface. This is a fundamental step toward using the
ndices within a roving window to measure T and D at different
ses from right to left (see Appendix C: Fig. C2). Together, the axes explain 82% of
lity are measured from a cropped portion of the surface (middle). Data come from
). (For interpretation of the references to colour in this figure legend, the reader is

scales within the surface (Fig. 6C). This can serve various research
purposes such as finding the regions of strong behavior in a multi-
factor response surface. Finally, this approach can be generalized
into asking what conditions affect strength of a threshold in state
space. Answering this question can provide insight into mecha-
nism.

4.2. Statistical relevance

Each empirical modeling method we test recovers data structure

using a ‘building material’ specific to the algorithm. By analogy,
CART uses square or rectangular prisms, Random Forest tends
to stipple with long narrow rectangular prisms, and NPMR uses
smooth, stretchy material (see Fig. 5). Model building algorithms
can introduce substantial model bias when the geometric con-
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traints of building material are not suited to the shape of the
esponse. For example, CART’s building material, square and rect-
ngular prisms, inefficiently captures diagonal gradients. Overall,
ART performs better with non-diagonal thresholds by splitting
ata at threshold values and creating discrete prediction levels for
ubsets of predictor values. This maintains square, flat areas typi-
al of non-diagonal thresholds or thresholds responding to a single
redictor (Fig. 5). CART models can be ‘pruned’ numerous ways
Hastie and Tibshirani, 2001), which change the size of the prisms
nd hence sensitivity to diagonality. However, our method of prun-
ng using ten-fold cross-validation is the most objective and robust
o external data (Hastie and Tibshirani, 2001), yet, this process cre-
tes large prisms.

Random Forest also uses rectangular prisms as building material
ut the prisms are typically much narrower and longer compared to
ART. Diagonality challenges Random Forest the same way it chal-

enges CART. Rectangular prisms inefficiently capture the diagonal
aces while efficiently capturing large, rectangular, flat areas typical
f non-diagonal thresholds (see Fig. 5).

NPMR produces smooth renditions of response patterns, and the
ensitivity of the method to threshold strength and diagonality is
ot due to the geometric constraints of the predictions. The sensi-
ivity of NPMR to threshold strength and diagonality is likely due
o the decrease in accuracy of predictions occurring when sloping
urfaces abut the edges of the predictor space. The smoothing func-
ion biases the edges toward the central tendency of the data. The
egree of this bias depends on the type of smoothing function and
he width of the kernel per predictor. Broader kernels incur more
ias.

In summary, non-parametric regression methods vary in their
fficacy of capturing response shapes. They are sensitive to the
hreshold strength and diagonality of the underlying surface. The
ontribution of tests that use threshold strength and diagonality
s especially relevant to the comparisons of empirical methods
esigned for complex data analysis such as species-habitat mod-
ls in ecology (e.g. Elith et al., 2006; Guisan et al., 2007). Currently,
ethods are compared using real data sets of unknown struc-

ure, and the comparisons do not discern the role of the response
hape in method performance (e.g. Elith et al., 2006; Guisan et al.,
007). Our work shows that non-parametric regression approaches
an impose substantial model bias, and this bias depends on the
eometry of the algorithm’s ‘building blocks’ coupled with the
eometry of the data structures. For example, the accuracy of CART
s highest with non-diagonal shapes and lowest for diagonal shapes
f data structure. The error or bias incurred from the limits of
ART’s algorithm is more pronounced for strongly diagonal sur-

aces. Strongly diagonal surfaces are not amenable to capture by
ectangular prisms (the analytical type of ‘building block’ imposed
y the algorithm). Such model bias has unknown and possibly far-
eaching consequences across disciplines that apply these methods.
ther disciplines using these methods range broadly from epidemi-
logy to earth sciences.

.3. Methodological considerations

We measure threshold strength and diagonality on a continuous
cale rather than assigning a simple ‘yes’ or ‘no’. Values for thresh-
ld strength can be interpreted by comparison to our benchmarks
the shapes represented among the 48 simulated data sets; Table 1,
ig. 2) or by comparison among data sets.

Because our simulated gradients represent many possible

esponse surfaces, T and D can be applied to any ecological regres-
ion with one or two continuous predictors. T and D depend on
ow well the shape of the response surface is sampled and fit.
ll of our examples with real data involve well-sampled response
urfaces with strong fits. Fig. 6A and B shows examples with con-
lling 222 (2011) 427–436 435

tinuous response (or dependent) variables, and Fig. 6C shows a
binary response variable. The indices can be used with response
surfaces modeled in state space from other disciplines. An impor-
tant exception includes surfaces where more than one response
value corresponds to a single unique combination of input values.
A classic example of this comes from the cusp catastrophe of catas-
trophe theory where a surface in state space exhibits a cusp-like
fold in the ordinate or z-dimension of an x, y, z coordinate system
(Thom, 1989). Although the cusp catastrophe surface is not gen-
erated using regression, it is still a surface in state space, albeit
theoretical. Folds in the ordinate dimension of state space can exist
empirically and theoretically. However, regression methods cannot
capture such folds, and the indices we present are not equipped to
measure such folds.

Although we limit the index development to three dimensions
of state space, the indices are specifically designed for ease of
algebraic extension to n-dimensions of state space. Evaluation of
multi-factor thresholds in more than three dimensions of state
space would offer more realism to threshold analysis. Extension
of the indices to n-dimensions of state space is a topic of future
research. Finally, the indices are not equipped to measure the rel-
ative importance among predictors in eliciting a threshold in state
space. However, this is can be measured using statistics from non-
parametric modeling methods. For example, in NPMR, “sensitivity”
is a measure of relative variable importance.

4.4. Geographic relevance

The indices of threshold strength and diagonality may conceiv-
ably be used in domains other than state space such as geographic.
Thresholds in the geographic domain are considered ‘boundaries’
or transition zones that delineate patches (Cadenasso et al., 2003).
Boundaries in a geographic domain can be visualized as meander-
ing zones of abrupt change differing in extent and magnitude, and
the objective is to map and characterize these meanders across
space. Employing threshold strength (presented here) incremen-
tally within a window at a fixed resolution in geographic space may
be appropriate for some applications. In fact, an algorithm measur-
ing abruptness of geographic boundaries in ecology already exists
(Bowersox and Brown, 2001) based largely on the work of Fortin
(1994) and Womble (1951); however, this algorithm does not pro-
vide a value of threshold abruptness that is insensitive to rotation
with respect to longitude and latitude (or the analogous x–y plane).
We explain this and the associated significance below.

First, boundary mapping employed by Fortin (1994) and
Womble (1951) identifies abrupt change across a spatial grid of
points by employing arbitrary cut-off values in the absolute values
of partial first derivatives among adjacent points. The identified
steep slopes and their spatial locations are called boundary ele-
ments. Bowersox and Brown (2001) build on boundary elements to
develop a method to measure the abruptness of such a boundary.
They measure the area under the curve representing a frequency
distribution of boundary elements using a gradient of twenty dif-
ferent cut-off values. The idea is that strong thresholds will show a
spike in numbers of boundary elements with high cut-offs. This
makes a taller, narrower curve with a longer tail compared to
other curves. However, partial first derivatives change across the
same point pattern but rotated 45◦, and consequently, they are not
rotationally invariant in the x-y plane. Hence, the same boundary
rotated 45◦ will yield different magnitudes of partial first deriva-
tives tied to each boundary element. Further, the metric is not

spatially explicit and does not distinguish a threshold shape from a
different shape with the same frequency distribution of boundary
elements.

In contrast, our threshold strength index solves these problems.
Our criteria of monotonicity (Eq. (6)) and bimodality (the left
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ultiplicand equation (8)) together describe the characteristic of
he shape as a whole. The criteria distinguish abrupt thresholds
rom less abrupt thresholds, or abrupt thresholds from shapes
ith no thresholds, and so on, regardless of their orientation in

he x–y plane.

. Conclusion

Threshold strength and diagonality are measurable shape
ttributes of multi-dimensional thresholds. We provide new tools
o quantify this underused type of information. The shape of a data
attern is fundamental to the development of theory in ecology (e.g.
hittaker, 1975); yet, shortfalls in the description and understand-

ng of a complex response shapes may be pervasive. These shortfalls
an impede theoretical advancement, successful prediction, and
anagement application (Efron and Tibshirani, 1991; Scheffer and

arpenter, 2003).
We move beyond single-factor methods of quantifying thresh-

lds that occur in state space to add realism and higher
imensionality. We introduce a parameter-free way to quantify
hreshold strength and diagonality from thresholds occurring in
tate space. Future methodological and basic research objectives
or the indices include: to measure if and how the prediction accu-
acy of other non-parametric regression methods depends on T and
, to develop a roving window method that can measure the indices
t different scales within a response surface, to study mechanisms
nderlying multi-factor thresholds for ecological systems hypoth-
sized to exhibit thresholds, and to answer the question, how can
his approach be used to identify systems approaching threshold
esponses before they happen?
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